EVC500 Relay

- 500+A continuous carry
- Hermetically Sealed
- Form X

Performance Data		
Parameter	Units	Values
Contact Arrangement, power contacts		1 Form X (SPST-NO-DM)
Rated Operating Voltage	VDC	100-450 (450-900) ${ }_{1}$
Continuous (Carry) Current ${ }_{4}$	A	500 @ 85 ${ }^{\circ} \mathrm{C}, 400 \mathrm{mcm}$ conductors.
Make/Break Current at Various Voltages	A	See page 3
Break Current at 450VDC	A	1,560, 1 cycle
Contact Resistance (@200A / 30 sec .)	m ,	<0.5 (Beginning of Life)
Load Life	Cycles	See page 3
Mechanical Life	Cycles	500,000
Operate Time @ $23^{\circ} \mathrm{C}$, Max.	ms	20_{3}
Close (includes bounce), Typ.	ms	15
Bounce (after close only), Max.	ms	7
Release (includes arcing), Max @ 2000A	ms	12
Dielectric Withstand Voltage	Vdc	2,920 (leakage <1mA)
Insulation Resistance ${ }_{2}$ @ 500VDC	$\mathrm{G} \Omega$	≥ 1
Shock, peak, Coil Energized	g	$50 \quad \because \quad \because \quad$ -
Vibration, sine, 80-2000Hz, peak	g	
Operating Ambient Temperature	${ }^{\circ} \mathrm{C}$	-40. to +85 \quad -
Weight, Nominal	lb. (kg)	95 (.43)

${ }_{1}$ Voltages between 450 to 900 VDC are capable but are load dependent and require TE Engineering approval.
${ }_{2}$ Meet dielectric strength \& IR requirements according to ISO 6469-3; conformity to IEC60664-1 in preparation.

${ }_{3} 20 \mathrm{~ms}$ (max.) at rated 12 voltage. Please consult TE engineering for operating time not done at rated voltage.
${ }_{4}$ Maximum allowed terminal temperatures for the products are as follows $150^{\circ} \mathrm{C}$ continuous $/ 175^{\circ} \mathrm{C}$ for 2 hours $/ 200^{\circ} \mathrm{C}$ for 2 minutes.

Coil Operating Voltages for Economized Coil (valid over temp range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)			[With TE Econ. Circuit] Micro-Controller Econ. (i.e. P/N 2098190-1)
	12V Timer Based	24 V Timer Based Econ. 4	
Voltage (will operate)	$8.5-16 \mathrm{Vdc}$	12-36 Vdc	9-36 Vdc
Pull-in Voltage Max.	8.5 V dc	12 Vdc	9.0 Vdc
Inrush Current (Max.)	3.8 A	3.8 A	3.8 A
Inrush Time (Max.)	150 ms	170 ms	130 ms
Frequency \& Duty Cycle (nom.)	. $19.5 \mathrm{kHz} / 3.0 \%$	19.0 kHz / 25\%	19.9 kHz / 20\%

${ }_{4}$ Preliminary for New Timer Based Economizer (Specification Subject To Change)

Coil Operating Voltage Using Voltage Reduction after Initial Pull-in [Un-Economized Coil ${ }_{5}$] (i.e. P/N 2098372-1)

Coil Resistance @ 230.C
3.14 ohm $+10 \% /-5 \%$

Pull-in Voltage @ $23^{\circ} \mathrm{C}$
$4.2 \mathrm{Vdc}(\mathrm{min})$ to $6.5 \mathrm{Vdc}(\max)$
Drop-out Voltage @ $23^{\circ} \mathrm{C}$.
$0.5 \mathrm{Vdc}(\mathrm{min})$ to 1.5 Vdc (max)
Minimum Hold Current at Temperature
650 mA
(Must operate @ 12V for 100 m s.before
reducing to minimum holding current)
${ }_{5}$ Un-Economized coil must be economized by the customer to avoid overheating
Recommended PWM Parameters for Customer Supplied Economizer Circuit (vaild over temp range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)

Frequency
Operating Voltage Range
Coil Current (minimum recommended RMS)
Duty Cycle
Inrus 20% to 30%
Inrush Time (Max.) 200ms

EVC500 Relay

Outline Dimensions

EVC500 without Coil Economizer

UNITS IN MILLIMETERS

EVC500 with Coil Economizer

EVC500 Relay

Contact Performance

Estimated Make \& Break Power Switching Ratings

NOTES:

1) Maximum of $300 \mu \mathrm{H}$ for resistive load. Consult TE Engineering for inductive loads.
2) Estimates based on extrapolated data. Consult TE Engineering to confirm performance in application.
3) End of life when "Insulation Resistance" between terminals falls below 50 megàohms @ 500VDC.
4) The maximum make current is 650A to avoid contact welding.
5) Curves for voltages above maximum rated voltage for information purpose only.
6) For reverse current, the performance of the contactor will rounghly be reduced by 50% of the cycle life in the forward direction.

CONTACTS CLOSED INTO CAPACITOR PRECHARGE SEQUENCE AT VARIOUS TIME CONSTANTS

(1) Because higher current cause more damage to contact surface, at least 95% Pre-charge recommended.
(2) Inrush current dependent upon RC time constant and pre-charge timing sequence.

ESTIMATED FUSE GUIDE FOR EVC500 CONTACTORS

EVC500 Relay

Coil Inductance

${ }_{1}$ Solid Line: EVC500 without Economizer (Contacts Closed)
${ }_{2}$ Dotted Line: EVC500 without Economizer (Contacts Opent),
Note: Data Points above were measured using Quadtech 1715 LGR Bridge set 100 ohm range, 1 V output, measured at $100 \mathrm{~Hz}, 120 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz .

